Pediatric Lumbar Epidural Catheter Placement

This was an epidural catheter placement on a 2-year-old male patient for a left hip osteotomy. His past medical history was remarkable for a congenital heart defect, bilateral congenital hip dislocations and a sacral dimple without any other neurologic anatomical abnormalities on the neonatal spine ultrasound. The patient was placed in a left lateral decubitus position. Using anatomical landmarks, the target epidural level was identified and marked. The patient’s back was prepped and draped under sterile conditions. An 18-gauge, 5 cm length Tuohy needle was used to encounter the epidural space. Subsequently a 20-gauge catheter was placed through the needle to a depth of 4.5 cm at the level of the skin. Negative aspiration of blood or CSF was confirmed. A 1 mL test dose of lidocaine 1.5% with epinephrine 1:200,000 was given without any cardiovascular changes on the monitors. Finally, the catheter was secured to the back of the patient. Parental consent was obtained for the publication of this video.

This video demonstrates the surface landmark technique for epidural catheter placement for postoperative pain control in a pediatric patient undergoing left hip osteotomy.  Following induction of general anesthesia, an epidural catheter (20 Gauge closed-tip) was placed at the L4-L5 vertebral level through a Tuohy needle (18 Gauge 5-cm long). Negative catheter aspiration of blood or CSF was confirmed followed by a negative test dose.  A bolus of local anesthetic followed by an infusion were administered via the epidural catheter for intraoperative pain control. After completion of the surgery, the child was extubated and exhibited adequate postoperative pain control with the continuous epidural analgesia and multimodal pain management. In complex surgical procedures associated with significant postoperative pain, epidural analgesia is a useful technique to manage intraoperative and postoperative pain. Epidural catheter placement can be performed either using surface landmark or ultrasound-guided techniques. For patient safety, it is imperative to understand relevant differences between adults and children when determining and performing neuraxial blocks. Parental consent was obtained for the publication of this video.
Epidural analgesia is a technique used as part of a multimodal pain management for invasive and painful surgical procedures. In addition to pain relief, epidural analgesia has been associated with decreased volatile anesthetic requirement, decreased catecholamine release, improved ventilation, earlier return of gut function, and decreased hospital and PICU length of stay. Neuraxial blocks have been traditionally performed using the surface landmark technique. Ultrasound guidance is also a viable option for catheter placement.  In the pediatric population, this procedure has been shown to be safe when performed after induction of general anesthesia. Children’s cognitive immaturity often precludes compliance with immobility for the procedure and are also less capable of reporting paresthesia during placement. The benefits of epidural analgesia outweigh the risks associated with needle placement in uncooperative patients.
A preoperative anesthesia evaluation including relevant medical history and focused physical exam should be performed. This patient had a history of sacral dimple with termination of conus medullaris at L3 without other anatomical abnormalities on the spinal ultrasound. The neurologic exam was grossly normal. A discussion between the anesthesia and surgical teams pertaining epidural catheter placement as a part of the multimodal pain control was conducted. Consent was obtained from the parents after discussing the risks, benefits and alternatives of the epidural procedure and their questions answered. Available  equipment and procedure set up included chlorhexidine for skin preparation, sterile drape, plastic and glass syringes, epidural needle, epidural catheter and Luer-lock connectors. A prepackaged epidural tray often includes most commonly used items. Proper needle introducer and epidural catheter sizes for the patient, addressed later under discussion. Resuscitation equipment including 20% lipid emulsion was within reach. After proper patient identification verification, induction of general anesthesia, confirmation of a functioning peripheral intravenous access, the epidural procedure time out was conducted and the patient was positioned on left lateral decubitus. The patient was continuously monitored with standard American Society of Anesthesiologists monitors. Surface landmarks were identified and marked on the patient. The site was cleaned with chlorhexidine and draped in a sterile fashion. A midline approach was used at the vertebral L4-L5 space. A 5-cm 18 Gauge Tuohy epidural needle introducer was slowly advanced into the vertebral space. The epidural space was identified with a loss of resistance technique using a glass syringe filled with saline. Once loss of resistance occurs, the needle advancing stops and 2-3 mL saline was injected in the epidural space. A closed-tip polyamide epidural catheter was threaded through the needle introducer into the epidural space.  Minimal resistance should have been encountered. The distance mark on the needle was noted at which the epidural space was identified so as to estimate the distance to thread the catheter in. The Tuohy needle was then withdrawn from the epidural space while simultaneously light counter traction on the catheter is done to prevent dislodgement. The catheter was then retracted to the desired level (3-5 cm within the epidural space). The clamp was attached to the end of the catheter. The catheter was aspirated to confirm absence of CSF flow and a test dose of lidocaine 1.5% with epinephrine 1: 200,000 was used to rule out intravascular placement. Confirmation of no changes on the EKG tracing or the rest of the vital signs were noted. See discussion section for test dosing specifics. Sterile dressing was placed after securing the catheter.
We did not encounter any complications before, during or after the epidural catheter was placed and subsequently removed the catheter after transitioning to oral pain medications on postoperative day 2 after surgery.
The most common indications for epidural anesthesia in the pediatric population include procedures involving the lower limbs, pelvis, perineum, abdomen and thorax. Contraindications to neuraxial blockade include patient or guardian refusal, infection at the insertion site, spina bifida, increased intracranial pressure, local anesthetic allergy, and coagulopathy. In patients with sepsis, degenerative neurologic conditions, spine abnormalities or spine hardware, and hypovolemia, the increased risk for complications should be carefully weighed against the benefits. There are some anatomical differences in infants and children vs. adults:  1) the pediatric conus medullaris is located lower in the spinal column, L3 level compared with L1-2 in adults, 2) the pediatric ligamentum flavum is thinner and less dense leading to a diminished loss of resistance sensation when entering the epidural space with the potential for unintended dural puncture, and 3) the pediatric sacrum is flatter and narrower.  A correct size of introducer needle and epidural catheter should be selected based on age for pediatric patients: A 5-cm 20 Gauge Tuohy needle with a 24 Gauge epidural catheter is appropriate for patients younger than 2 years. A 5- or 10-cm 18 Gauge Tuohy needle and a 20 Gauge epidural catheter are typically used in older children. Prescription and dosing of test solution and medication also varies by age and size (see below). Pharmacologic differences between pediatric and adult patients can significantly impact epidural management necessitating dosing adjustments for volume, concentration and toxic limits for efficacy and patient safety. These differences include: surface area to body mass ratio, immaturity of liver and kidney function, concentration of plasma-binding proteins, and underdeveloped blood-brain barrier. The two most common local anesthetics used for epidurals are bupivacaine and ropivacaine. Lidocaine is used for the test dose only. Bupivacaine/Levobupivacaine 0.25% and Ropivacaine 0.2% are typically used at 0.5 mL/kg for lumbar epidural initial loading (0.3 mL/kg thoracic epidural initial loading) and 0.25 mL/kg for subsequent “top-up” in order to obtain intraoperative analgesia. Continuous epidural anesthesia with Bupivacaine/Levobupivacaine can be performed with a dose of 0.2 mg/kg/hr for children younger than 3 months, 0.3 mg/kg/hr for children between 3 months and 1 year, and 0.4 mg/kg/hr for children older than 1 year. Ropivacaine is typically used at 0.2 mg/kg/hr for children younger than 3 months, 0.3 mg/kg/hr for children between 3 months and 1 year, and 0.4 mg/kg/hr for children older than 1 year. Some authors use more volume of diluted Ropivacaine (0.1%) or Bupivacaine/Levobupivacaine (0.125%) on the continuous infusion to achieve the desired level while keeping the dosage under toxic limits. In this case, we used ropivacaine for bolus and infusion at the age appropriate doses mentioned before. For testing of catheter location, epinephrine is the only adjunct added by drug manufacturers to their marketed local anesthetic preparations. Typically, it has been used in a concentration of 5 mcg/mL (1 : 200,000), with the intent of identifying inadvertent intravascular injection (test dose). The test dose of epinephrine is typically limited to 0.5 mcg/kg (0.1 mL/kg of a 1 : 200,000 solution) to a maximum dose of 15 mcg (3mL). A positive test dose after intravenous injection of 0.5 mcg/kg of epinephrine is defined as an increase in heart rate of 10 to 20 bpm, a 25% change in T-wave amplitude, ST segment changes on ECG, or a 10% increase in systolic blood pressure. Epidural complications and side effects can be associated with the procedure itself or to the drug administered. Potential complications associated with the administration of the drug include local anesthetic systemic toxicity (LAST), allergy to local anesthetic, direct local anesthetic-induced nervous tissue injury, and errors from drug or mode of delivery. Transient complications include back pain, pneumocephalus, and postdural puncture headache. Life-threatening complications include subdural injection of local anesthetic, total or high spinal, infectious or aseptic meningitis, cardiac arrest, spinal epidural abscess, epidural hematoma formation, and permanent neurologic injuries. Consistent protocols help prevent complications: ensuring correct dosing of medication, performing the epinephrine test dose, proper calculation of the desired depth of the catheter, location and availability of lipid emulsion (20%) solution for rescue in case of LAST. Daily patient evaluations should be done for assessment of the block and possible catheter-related complications.
There are no conflicts to disclose on this case.
There are no acknowledgements.
De Jose Maria B, Tielens L, Roberts S. Pediatric epidural and spinal anesthesia and Analgesia. NYSORA. https://www.nysora.com/topics/sub-specialties/pediatric-anesthesia/pediatric-epidural-spinal-anesthesia-analgesia/. Published April 18, 2022. Accessed July 18, 2022. Roulhac D. Toledano and Marc Van de Velde Epidural Anesthesia and Analgesia. NYSORA. https://www.nysora.com/topics/regional-anesthesia-for-specific-surgical-procedures/abdomen/epidural-anesthesia-analgesia/. Accessed September 27, 2022. Peter J. Davis, MD, FAAP, Franklyn P. Cladis, MD. SMITH'S ANESTHESIA FOR INFANTS AND CHILDREN, NINTH EDITION. ELSEVIER. St. Louis, Missouri: Elsevier, [2017] Chapter 22. ISBN: 978-0-323-34125-7. Santhanam Suresh, Claude Ecoffey et al. The European Society of Regional Anesthesia and Pain Therapy/American Society of Regional Anesthesia and Pain Medicine Recommendations on Local Anesthetics and Adjuvants Dosage in Pediatric Regional Anesthesia. Regional Anesthesia and Pain Medicine • Volume 43, Number 2, February 2018

Review Pediatric Lumbar Epidural Catheter Placement.

Your email address will not be published.

Related Videos

Register today to continue watching

Sign up for our free membership to watch and submit videos today! If you are already a member please log in to access your account.

Sign Up Now

Already a member? Click here to log in

Register today to submit a video

Sign up for our free membership to watch and submit videos today! If you are already a member please log in to access your account.

Sign Up Now

Already a member? Click here to log in

Upgrade your membership to continue watching

Please upgrade to membership to continue watching more videos.

Upgrade Now

Renew your subscription to continue watching

Please renew your subscription to continue watching.

Renew Now

Create An Author

Create A User

Create A Term