4 Gland Duct Ligation

Four Gland Duct Ligation with Botulinum Injections 

Background:  

This video visualizes the four-duct ligation surgery for chronic sialorrhea. Sialorrhea is characterized by the improper spilling of saliva, most commonly due to poor muscle coordination1. Controlling oral secretions with the perioral muscles and the act of swallowing takes precise contraction from voluntary and reflex contractions. Sialorrhea is common in newborns and children up to 5 since they have not learned to coordinate these contractions yet1. The most common etiology of persistent, or new, sialorrhea is cerebral palsy, amyotrophic lateral sclerosis, seizures, cerebrovascular accidents, facial paralysis, and dental problems1.While many neurological conditions can predispose a child to sialorrhea, cerebral palsy is most common, comprising up to 10% of cases3.The side effects of untreated sialorrhea include increased risk of infections, dental caries, and interference with speech. Aspiration pneumonia is a serious consequence from pooling of saliva in the posterior pharynx3. Patients can also become malnourished due to trouble chewing, loss of fluids/electrolytes, and loss of protein2. Non-evasive measures such as oral motor therapy, behavior modification therapy via biofeedback, and drug therapy should be considered before proceeding to surgical treatment2. Surgical treatment is preferred when the patient is at risk for aspiration pneumonia3. One of the most common surgical procedures for sialorrhea is the four-gland duct ligation. While the four-gland duct ligation is low risk for complications, facial swelling, aspiration pneumonia, oxygen desaturation, and vomiting are potential complications. Out of these, facial swelling was the most common adverse event3. 

Methods:  

An appropriate surgical candidate was identified in the clinic and advised about the risks and benefits of the procedure. The patient was appropriately prepped and inducted under general anesthesia. An oral side bitter was placed to visualize the oral cavity. Stensen’s duct was identified on the left with army navy retraction. A lacrimal probe was used to maintain the duct opening and an alice retractor was used to hold the duct in place. The dissection was performed bluntly and with cautery. Care was taken to prevent injury to the duct and to provide clear exposure. The probe was removed, and the proximal portion of the duct was ligated with two oppositely placed 3.0 silk sutures. The mucosa was then closed with 4.0 chromic suture in a simple interrupted stitch. The same procedure was performed on the contralateral side. The focus was then turned to whartons duct. The oral side bitter was removed, and the tongue was retracted using an army navy. The right papilla was identified and retracted with a Geralds with teeth to maintain proper visualization of the duct. Blunt and cautery dissection was performed around the duct for proper exposure. Once down to the base of the duct, tonsil clamps were used to clamp just proximal to the gland to aid with suture ligation. Two oppositely placed 3.0 silk sutures were used to ligate the duct. The mucosa was closed with a 4.0 chromic stitch. The exact same procedure was performed on the left whartons duct. Once complete the oral cavity was irrigated and cleaned. Ultrasound was then brought into the field. Under direct visual guidance 1mg/kg of botulinum toxin was injected into the parotid and submandibular glands using the hockey shaped ultrasound probe. Having tolerated the procedure well, the patient was turned back over to anesthesia, awakened and transferred to the recovery room in stable condition.  

Results:  

There were no complications encountered before, during, or after the procedure. The patient was followed in clinic for 1 year and the patient’s care giver reported satisfactory reduction in sialorrhea.  

Discussion:  

This video shows the steps of performing a 4-gland duct ligation with botulinum toxin injections. It is a commonly indicated procedure in children under 5 years of age for chronic sialorrhea refractory to other treatment options. While not first line therapy, this procedure should be heavily considered for due to post-operative success and care giver satisfaction.  

 

 

 

 

 

 

References:  

Jean-Paul Meningaud, Poramate Pitak-Arnnop, Luc Chikhani, Jacques-Charles Bertrand, Drooling of saliva: A review of the etiology and management options, Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, Volume 101, Issue 1,2006, Pages 48-57, ISSN 1079-2104 
Little, S.A., Kubba, H. and Hussain, S.S.M. (2009), An evidence-based approach to the child who drools saliva. Clinical Otolaryngology, 34: 236-239. https://doi-org.libproxy.uams.edu/10.1111/j.1749-4486.2009.01917.x 
Khan WU, Islam A, Fu A, et al. Four-Duct Ligation for the Treatment of Sialorrhea in Children. JAMA Otolaryngol Head Neck Surg. 2016;142(3):278–283. doi:10.1001/jamaoto.2015.3592

Excision of Facial Venous Malformation

Introduction:

Facial venous malformations are challenging vascular anomalies that can significantly impact a patient’s quality of life. These malformations, characterized by abnormal clusters of dilated veins in the facial region, can cause significant cosmetic deformities, bleeding, and functional impairments. Surgical excision of facial venous malformations is a treatment option, aiming to address both the concerns and functional limitations associated with these vascular anomalies.

Case presentation:

The affected area on the lateral aspect of the upper eyelid margin was treated with a YAG laser set at 20 watts and one-second exposure time. This was followed by excision of a 1 x 2 cm segment of the affected skin above the eyelid margin. Using electrocautery, the skin, subcutaneous tissue, and venous malformation were dissected, avoiding branches of the facial nerve to the orbicularis oculi muscle. The incision was carried around the obvious margins of the malformation down to the temporalis muscle fascia. The dissection was performed underneath the lesion until it was completely resected. After excision of a portion of the eyebrow involved in the malformation, the deeper parts of the upper eyelid and orbicularis muscle affected by the venous malformation were removed. The deep portion of the dissection was not very vascular and was controlled with the bipolar and monopolar cautery. To achieve primary closure, we carefully undermined the forehead and facial skin. The lower facial skin flap was elevated and advanced, and primary closure was achieved with Vicryl sutures. Closure of the eyelid skin to the lateral forehead skin followed with chromic and Vicryl sutures to alleviate tension. Although the larger vascular lesion was excised from the skin and subcutaneous tissue, residual malformation remained around the upper eyelid and lateral orbital rim. This was dissected under the skin to remove the vessels and preserve the eyelid skin. Post-procedure, Mastisol and Steri-Strips were applied to the suture line to relieve tension and help wound healing.  The estimated blood loss was less than 30 mL. The patient had no complications and did well.

Conclusion:

In this case, the surgical intervention effectively removed most of the facial venous malformation. Despite some residual malformation, the procedure yielded satisfactory outcomes with no postoperative complications. The residual malformation in the upper eyelid can be controlled with a YAG laser and/or sclerotherapy.

Endoscopic removal of TM cholestestoms

A 3 yo girl was referred to the ENT clinic after her PCP noticed an abnormal TM on the left.

She has a history of a 2 ear infections prior to presentation. She is asymptomatic, with no pain and no drainage from her TM. Her audiogram was normal. Her physical eventually revealed the presence of a relatively large keratin pearl on her TM, without obvious middle ear effusions. After a short period of observation the family decided to have it removed.

The case was performed endoscopically in a trans-canal approach. The lesion was dissected mainly with a straight pick. The fibrous layer underneath was found to be intact and no myringoplasty was necessary.

The patient was was seen again 2 months post-op and her TM was found to be normal with a normal audiogram.

Myringoplasty Using a Human Birth Tissue Allograft

This video demonstrates a myringoplasty procedure using Neox RT – a human birth tissue allograft – to repair a tympanic membrane perforation in a pediatric patient. We employ a “sandwich” technique, in which pieces of the allograft are placed both medial and lateral to the perforation. After partially filling the middle ear with dry, absorbable gelatin sponge, trimmed pieces of allograft are inserted sequentially in underlay and overlay fashion to remain medial and lateral to the perforation. Both the underlay and overlay pieces cover the perforation and overlap the native tympanic membrane around the perforation. More absorbable sponge is then inserted lateral to the graft to hold it in place against the tympanic membrane. Finally, antibiotic drops and bacitracin ointment are placed in the canal.

Monopolar Diathermy Tonsillectomy Surgery

The video demonstrates tonsillectomy surgery with monopolar diathermy technique.

Eagle Syndrome (Calcification of the Stylohyoid Ligament) Excision

Abstract

Introduction: Eagle syndrome can affect many patients of any age, anywhere from 25 to 80 years old. The most common symptoms are ear and anterior superior neck pain underneath the angle of the jaw, tinnitus, some throat symptoms, and dizziness. There are two approaches that can be done for surgery, with our preference being for the intraoral approach.

The pathophysiology is that the stylohyoid ligament becomes calcified and can cause pressure on blood vessels and nerves, causing variable symptoms. It is frequently undiagnosed causing patients to visit several physicians before correctly identifying the problem.

A CT scan of the neck with or without contrast, can help identify the problem.

Case presentation: A 39-year-old female with a history of ear and upper neck pain at the angle of the jaw. CT imaging showed calcification of the stylohyoid ligament. Surgery was recommended and a trans-oral approach was used.

Methods: General anesthesia with muscle relaxation was used. A crow Davis or Dingman tractor was used to retract the endotracheal tube to allow exposure of the Oropharynx. Betadine was used to help sterilize the oropharynx. Palpation on each side is done to localize the calcified ligament and if present, the surgery is much easier to do. A 2.5 cm vertical incision is made in the anterior tonsillar pillar, being careful not to go too high on the soft palate because it can paralyze the soft palate causing significant reflux into the nasopharynx and nose, with speech and swallowing problems.

The tonsil capsule and the medial pterygoid muscle are identified, and the dissection is between the two. The calcified ligament is usually about 2.5 cm deep to that area. It is in or under the fat pad in the prevertebral area. It may be difficult to find, and it is helpful if your finger is passed through the incision to palpate deeper to feel the bony process.

The stylohyoid muscle and fat must be cleaned off the bone as high and low as can be dissected ideally using a combination of the monopolar and bipolar cautery. It is important to be careful in this area with the monopolar cautery because of the proximity to the internal carotid artery and jugular vein. Also, the vagus nerve can be injured.

A Kerrison rongeur is used to fracture the bone superiorly. The ligament is connected at the inferior part which can be divided with the cautery.

It is important to obtain good hemostasis using the bipolar cautery and saline irrigation. The wound is closed by sewing the tonsil capsule to the medial pterygoid muscle after which the mucosal incision is sewed. Preferably, vicryl sutures are used so that it will last approximately four weeks.

Bupivacaine 0.5% can be injected around the surgical site to decrease postop pain.

The surgery is done as an outpatient basis and the patient is given pain medication and antibiotics for significant throat pain lasting 7 to 10 days postop.

Conclusion: The removal of the calcified Stylohyoid ligament via an intraoral approach, can be simple or very complicated, and must be done carefully by an experienced surgeon to avoid major complications.

Most patients benefit significantly with relief of their symptoms and are very grateful. This case illustrates the surgical procedure that was easy to perform, but they are not all that easy.

Surgeons:

Siddharth Patel, MD

James Y Suen, MD

Conflicts of Interest: None

Funding: This research received no external funding

Department of Otolaryngology – Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA

Posterior Pharyngeal Flap for Large Gap Velopharyngeal Insufficiency

Velopharyngeal insufficiency (VPI) is a speech disorder characterized by inability for the palate (velum) to contact the posterior pharyngeal wall resulting in nasal air escape and subsequent speech abnormalities. All but the mildest cases are treated surgically, with technique chosen based on the closure pattern and gap size reserving the pharyngeal flap for the most severely affected patients. We present a 6-year old female with developmental delay and VPI with large (~60%) coronal pattern velopharyngeal gap subsequently deemed a candidate for posterior pharyngeal flap.

Following Dingman mouthgag placement, the posterior wall is inspected and palpated ensuring no carotid medialization. The flap is designed and marked as wide and long as possible to reduce tension. Local injection wis performed. Using an angled needle tip Bovie, the flap was then elevated in the plane the prevertebral fascia to the level of the nasopharynx. The donor site is closed with simple interrupted 4.0 chromic sutures. The palatal mucosa is divided in a T-shaped fashion, without violating palatal musculature. The flap is inset with horizontal mattress sutures using 4.0 chromic. The nasal ports are inspected frequently to ensure adequate nasal airway patency. The palatal mucosa is reapproximated and any residual donor site closed.  The patient is observed overnight, discharged home post-operative day 1, maintained on a soft diet for two weeks and abstains from speech therapy for 4 weeks to allow healing. Follow up demonstrated excellent healing well and VPI resolution on repeat speech sample.

Submucous Cleft Palate Repair: Furlow Double-Opposing Z-Palatoplasty

32-month-old male with Coffin Siris syndrome, bilateral middle ear effusions, and velopharyngeal insufficiency who presents with a submucous cleft palate.

Tracheostomy with Tracheocutaneous Adhesion and Cartilage Preservation Technique

The video describes a tracheostomy technique. The tracheostomy performed by  tracheocutaneous adhesion that is suturing stoma to skin directly without violating cartilage during the surgery. This result in stoma that opens directly in trachea without risk of false tract formation. This technique makes tube reinsertion easier in accidental decannulation and avoid consequences of false tract.

The Advantage of this technique is avoidance of tracheal cartilage violation and subsequent airway deformity. It allow faster maturation of tract. Lastly, prevent false tract formation and subsequent complications related to it.

This technique was described by Dr.Jaber Alshammeri, consultant pediatric otolaryngology and director of pediatric otolaryngology fellowship at King Abdullah Specialized Children Hospital, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia.

Arteriovenous Malformation (AVM) Resection

Abstract

Introduction: Arteriovenous malformations (AVMs) are abnormal connections between arteries and veins that lack an intervening capillary network. The high flow of arterial blood directly into veins can lead to the weakening of venous walls, potentially resulting in life-threatening hemorrhages.The primary treatment modalities for cerebral arteriovenous malformations (AVMs) include surgical resection, endovascular embolization.

Case presentation: A 34-year-old female presented with a roughly 7×7 cm arteriovenous malformation (AVM) located in the right temporoparietal area. The AVM extended both superficially and deeply into the infratemporal fossa and laterally towards the orbit. Imaging revealed the presence of multiple large contributing vessels in the preauricular area. The patient underwent embolization with interventional radiology one day prior to the surgical procedure.

Methods: Markings were made along the right upper hairline after trimming and continued down the preauricular skin. A #15 blade was utilized to make incisions through the epidermis and dermis, reaching the subcutaneous tissues. The temporoparietal and temporal flap fascia were dissected and carefully raised. Once the AVM was detached from the surrounding temporalis muscle and the zygomatic bone, its feeder vessels were ligated near the tragal pointer using hemoclips to aid in future localization. Hemostasis was successfully achieved with bipolar cautery. The temporalis muscle and its adjacent fascia were sutured closed with vicryl suture. Closure of the deep dermal layer was accomplished with 4-0 PDS, and the skin was closed in a running subcutaneous fashion using 5-0 monocryl.

Conclusion : We present a successful surgical resection of Arteriovenous Malformation with a prior embolization by interventional radiologist

Surgeons:

Coleman, Madison, MD,

Aryan D Shay ,MD

Gresham T Richter, MD, FACS

Conflicts of Interest: None

Funding: This research received no external funding

Department of Otolaryngology – Head and Neck Surgery, University of Arkansas for Medical Sciences, Little Rock, AR, USA
Arkansas Children’s Hospital, Little Rock, AR, USA

Your 30-second teaser has ended. Log in or sign up to watch the full video.

Newsletter Signup

"*" indicates required fields